Differences between Spectro-Temporal Receptive Fields Derived from Artificial and Natural Stimuli in the Auditory Cortex

نویسندگان

  • Jonathan Laudanski
  • Jean-Marc Edeline
  • Chloé Huetz
چکیده

Spectro-temporal properties of auditory cortex neurons have been extensively studied with artificial sounds but it is still unclear whether they help in understanding neuronal responses to communication sounds. Here, we directly compared spectro-temporal receptive fields (STRFs) obtained from the same neurons using both artificial stimuli (dynamic moving ripples, DMRs) and natural stimuli (conspecific vocalizations) that were matched in terms of spectral content, average power and modulation spectrum. On a population of auditory cortex neurons exhibiting reliable tuning curves when tested with pure tones, significant STRFs were obtained for 62% of the cells with vocalizations and 68% with DMR. However, for many cells with significant vocalization-derived STRFs (STRF(voc)) and DMR-derived STRFs (STRF(dmr)), the BF, latency, bandwidth and global STRFs shape differed more than what would be predicted by spiking responses simulated by a linear model based on a non-homogenous Poisson process. Moreover STRF(voc) predicted neural responses to vocalizations more accurately than STRF(dmr) predicted neural response to DMRs, despite similar spike-timing reliability for both sets of stimuli. Cortical bursts, which potentially introduce nonlinearities in evoked responses, did not explain the differences between STRF(voc) and STRF(dmr). Altogether, these results suggest that the nonlinearity of auditory cortical responses makes it difficult to predict responses to communication sounds from STRFs computed from artificial stimuli.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rapid synaptic depression explains nonlinear modulation of spectro-temporal tuning in primary auditory cortex by natural stimuli.

In this study, we explored ways to account more accurately for responses of neurons in primary auditory cortex (A1) to natural sounds. The auditory cortex has evolved to extract behaviorally relevant information from complex natural sounds, but most of our understanding of its function is derived from experiments using simple synthetic stimuli. Previous neurophysiological studies have found tha...

متن کامل

Idealized Computational Models for Auditory Receptive Fields

We present a theory by which idealized models of auditory receptive fields can be derived in a principled axiomatic manner, from a set of structural properties to (i) enable invariance of receptive field responses under natural sound transformations and (ii) ensure internal consistency between spectro-temporal receptive fields at different temporal and spectral scales. For defining a time-frequ...

متن کامل

Estimating sparse spectro-temporal receptive fields with natural stimuli.

Several algorithms have been proposed to characterize the spectro-temporal tuning properties of auditory neurons during the presentation of natural stimuli. Algorithms designed to work at realistic signal-to-noise levels must make some prior assumptions about tuning in order to produce accurate fits, and these priors can introduce bias into estimates of tuning. We compare a new, computationally...

متن کامل

Influence of context and behavior on stimulus reconstruction from neural activity in primary auditory cortex.

Population responses of cortical neurons encode considerable details about sensory stimuli, and the encoded information is likely to change with stimulus context and behavioral conditions. The details of encoding are difficult to discern across large sets of single neuron data because of the complexity of naturally occurring stimulus features and cortical receptive fields. To overcome this prob...

متن کامل

Artificial Spectro-Temporal Receptive Fields Evoked by Long Speech Signals

Neurons in the primary auditory cortex A1 unitize multidimensional receptive activation fields, which respond to specific frequency bands and timing patterns of the input signal. Such ‚spectro-temporal receptive fields’ (STRF) can experimentally be determined by reverse correlation methods if the activation or output signal patterns of the neurons are known. This seems impossible for neurons in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012